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ABSTRACT
Systemic administration of MSCs resulted in remarkable functional improvements in injured tissues without either long-term engraftment or

differentiation in many clinical and experimental situations. Emerging evidence suggest that most of the beneficial effects of MSCs could be

explained by secretion of soluble factors that have multiple effects including modulation of inflammatory and immune reactions, protection

from cell death, and stimulation of endogenous progenitor cells. In this review, we focus on the therapeutic factors that account for the

beneficial effects of MSCs in animal models of human diseases. J. Cell. Biochem. 112: 3073–3078, 2011. � 2011 Wiley Periodicals, Inc.
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C urrently, considerable efforts are being made to develop cell

therapies using multipotent mesenchymal stromal cells often

referred to as mesenchymal stem cells (MSCs) [Dominici et al., 2006;

Prockop et al., 2010]. They are readily isolated from small aspirates

of a patient’s bone marrow, expand rapidly in culture, and

differentiate into several cellular phenotypes [Dominici et al.,

2006]. Therefore, they were originally sought to repair injured

tissues by engrafting and differentiating. Engraftment with

differentiation was observed in some prenatal systems or in animal

models with local infusions of high concentrations of the cells

[Kopen et al., 1999; Mackenzie and Flake, 2001; Prockop, 2009;

Shake et al., 2002]. However, in most clinical and experimental

situations, systemic administration of MSCs resulted in functional

improvements without evidence of long-term engraftment or

differentiation [Iso et al., 2007; Lee et al., 2009b; Prockop, 2009;

Prockop et al., 2010]. In addition, improvements of injured tissues

take place too rapidly to be explained by differentiation of MSCs.

Therefore, emerging evidence suggest that most of the beneficial

effects could be explained by secretion of therapeutic factors that

have multiple effects including modulation of inflammatory and

immune reactions, protection from cell death, and stimulation of

endogenous progenitor cells [Prockop et al., 2010]. Moreover, it has

been shown that MSCs secrete a large number of cytokines under

normal culture conditions [Caplan, 2009]. More importantly, they

can be activated to express high levels of additional therapeutic

factors by cross-talk with injured cells or microenvironments. In this

review, we focus on the therapeutic factors that can explain the

beneficial effects of MSCs observed in animal models of human

diseases.

ANTI-INFLAMMATORY AND
IMMUNOSUPPRESSIVE EFFECTS

Continued research on MSCs during the past decade revealed their

remarkable ability to modulate immune and inflammatory reac-

tions. Since MSCs were originally shown to suppress activation of T

cells in vitro and prolong the survival of skin grafts in vivo

[Bartholomew et al., 2002; Le Blanc et al., 2003], they have been

tested in various models of diseases that involve inflammatory and

immune components. The majority of the studies suggest that

administered MSCs quickly respond to stress or injury and suppress

excessive immune responses without significant engraftment.

The notion that MSCs have immunoregulatory abilities is

remarkable, but not surprising. Vast evidence suggest that MSCs

can actively participate in maintaining the homeostasis of local

microenvironment. First, the ability of bone marrow-derived MSCs

to support hematopoietic stem cells (HSCs) in culture has been

known for a long time [Dexter et al., 1977; Sacchetti et al., 2007]. By

secreting certain factors, MSCs can preserve the undifferentiated

state of HSCs and support their proliferation. In fact, it is now

accepted that MSCs play a role as organizers of HSC niche in vivo

[Sacchetti et al., 2007; Mendez-Ferrer et al., 2010]. Second, MSCs are

known to have similarities with immune cells. For example, they
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have either constant or inducible expression of Toll-like receptors

and cytokine/chemokine receptors [Docheva et al., 2008] that

rapidly trigger the production of secretory factors in MSCs after

exposure to pathogen-associated molecules (LPS, zymosan, pepti-

doglycan, etc.) or pro-inflammatory cytokines (TNF-a, IFN-g, etc.).

Therefore, MSCs have a machinery that allows them to actively

respond to the stress or injury in a manner similar to immune cells

e.g., by sensing pathogens or injury signals and by secreting a

variety of cytokines or chemokines. Among these factors, many

have been identified as therapeutic proteins secreted by MSCs that

modulate the inflammation and immune reactions in models of

acute inflammation, autoimmune diseases, and organ transplanta-

tion.

ANTI-INFLAMMATORY PROTEIN TNF-a STIMULATED GENE 6

PROTEIN (TSG-6)

Recently, we reported that systemic administration of human MSCs

(hMSCs) resulted in functional improvements in a mouse model of

acute myocardial infarction (MI) without significant engraftment

[Lee et al., 2009b]. We employed real-time PCR assay to track the

fate of intravenously (IV) injected MSCs. Surprisingly, only a few

cells were found in the injured heart, while the majority was trapped

in the lungs. However, hMSCs trapped in the lungs underwent major

changes in their patterns of gene expression. Among the up-

regulated genes, TSG-6 had attracted our attention, because it was

previously shown to produce multipotent anti-inflammatory

effects: (a) it inhibits the inflammatory network of proteases

primarily by increasing the inhibitory activity of inter-a-inhibitor,

(b) it binds to fragments of hyaluronan and thereby abrogates their

pro-inflammatory effects, and (c) it suppresses neutrophil infiltra-

tion into sites of inflammation.We further demonstrated that hMSCs

did not secrete TSG-6 under normal culture conditions, but they

were rapidly activated to secrete TSG-6 by inflammatory signals

(TNF-a, IL-1b, or LPS) or environmental stress such as aggregation

or hypoxia [Bartosh et al., 2010]. In a mouse model of MI [Lee et al.,

2009b], hMSCs attenuated excessive inflammatory responses in

which infiltrating neutrophils generate MMPs that degrade the

myocardium by secreting TSG-6, and therefore reduced the

infarction size in the heart. In addition, hMSCs with an siRNA

knock-down of the TSG-6 gene had no effect on inflammatory

responses and infarct size. Systemic administration of recombinant

human (rh) TSG-6 duplicated the effects of hMSCs.

The anti-inflammatory effects of hMSCs via secreting TSG-6 were

also observed in mouse and rat models of chemical and mechanical

injury of the cornea [Oh et al., 2010; Roddy et al., manuscript

submitted]. Either intraperitoneally (IP) or IV administered hMSCs

significantly suppressed neutrophil infiltration, production of pro-

inflammatory cytokines, and development of corneal opacity. The

results are consistent with the previous observations in a mouse

model of MI. There was no engraftment of hMSCs in corneas

following IP or IV injection. The hMSCs transduced with the TSG-6

siRNA had no significant effect on corneal opacity and inflamma-

tion. Intraocular, topical, or systemic administration of rhTSG-6

reproduced the remarkable effects in suppressing inflammation and

reconstructing the corneal surface.

In a mouse model of zymosan-induced peritonitis [Choi et al.,

2011], we further demonstrated a novel mechanism whereby hMSCs

via TSG-6 attenuated the cascade of inflammation. In this model,

resident macrophages are primarily responsible for initiating

inflammatory cascade by secreting pro-inflammatory cytokines.

Administration of either hMSCs or TSG-6 quickly suppressed TLR2-

mediated NF-kB translocation in resident macrophages, and thereby

inhibited secretion of TNF-a and other chemokines responsible for

neutrophil recruitment. These effects were dependent on the

interaction between TSG-6 and CD44 expressed on the macrophage

surface.

Considering that excessive inflammatory responses contribute to

pathological changes inmany diseases, the anti-inflammatory effect

of TSG-6 secreted by hMSCs at the initial phase of acute

inflammation may explain the therapeutic effects of MSCs without

long-term engraftment.

INTERLEUKIN 1 RECEPTOR ANTAGONIST (IL-1RA)

IL-1RA is a naturally occurring inhibitor of IL-1, and is known to be

expressed by mouse and hMSCs [Ortiz et al., 2007]. IL-1RA

expressed by MSCs blocked an IL-1a-dependent proliferation of T

cell-line and inhibited release of TNF-a from activated macrophages

in vitro. Also, IL-1RA-expressing mouse MSCs protected the lungs

from inflammation and fibrosis in a model of bleomycin-induced

lung injury in mice. In fact, IL-1RA expressed by MSCs was more

effective in suppressing inflammation than systemic or viral

delivery of recombinant IL-1RA. Considering IL-1 and TNF-a are

at the nexus of most inflammatory responses, MSCs as a cellular

vector for IL-1RA could be potential therapeutic agents in the

treatment of human diseases such as lung injury and diabetes

mellitus [Ortiz et al., 2007; Volarevic et al., 2010].

PROSTAGLANDIN E2 (PGE2)

Among the factors MSCs produce to suppress immune reactions,

PGE2 is one of the molecules most studied. The hMSCs secrete high

level of PGE2 alone or in response to IL-6 [Bouffi et al., 2010], IFN-g,

TNF-a, or LPS [Nemeth et al., 2009]. Reports have demonstrated that

MSCs via PGE2 exert their immunosuppressive effects in vitro in

multiple ways by (a) suppressing the proliferation and activation of

mitogen-induced or antigen-specific proliferation of T cells [Najar

et al., 2010], (b) switching the host response from a Th1/Th17 toward

a Th2 immune profile [Bouffi et al., 2010], (c) inducing regulatory T

cells (Tregs) [English et al., 2009], (d) inhibiting the maturation and

differentiation of dendritic cells (DCs) [Spaggiari et al., 2009], (e)

promoting the production of IL-10 in macrophages [Nemeth et al.,

2009], and (f) inhibiting the proliferation and cytotoxic function of

natural killer (NK) cells [Spaggiari et al., 2008].

The in vivo evidence of PGE2-mediated effects of MSCs were

reported in models of sepsis, experimental autoimmune encephalitis

(EAE), and experimental arthritis. The notable observation wasmade

by Nemeth et al. [2009]. They found that MSCs reduced the mortality

in mice with sepsis, but the beneficial effects of MSCs were

eliminated by depleting macrophages or blocking IL-10 signaling.

Subsequently, they demonstrated that MSCs released PGE2 in

response to inflammatory signals such as TNF-a and LPS, and

thereby acted on the host macrophages through the prostaglandin
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EP2 and EP4 receptors to increase their production of the anti-

inflammatory cytokine IL-10. Recently, more groups reported the

PGE2-mediated immunosuppressive effects of MSC in models of

EAE [Matysiak et al., 2011] and collagen-induced arthritis (CIA)

[Bouffi et al., 2010]. In both studies, they confirmed the PGE2-

mediated effects utilizing direct or indirect inhibition of PGE2

production.

INDOLEAMINE 2,3-DIOXYGENASE (IDO)

Recently, it has been shown that MSCs express IDO upon stimulation

with IFN-g [Meisel et al., 2004]. IDO has been identified as a T-cell

inhibitory factor by catabolizing the essential amino acid trypto-

phan required for T cell proliferation [Meisel et al., 2004; Ryan et al.,

2007]. Several reports demonstrated an IDO-mediated inhibition of

MSCs on T cell response in mixed lymphocyte reactions (MLRs)

[Meisel et al., 2004]. Furthermore, IDO-mediated immunosuppres-

sive effects of hMSCs was confirmed in disease models associated

with T cell activation such as organ transplantation including heart

transplantation in rats [Popp et al., 2008] and kidney transplantation

in mice [Ge et al., 2010]. In both models, blocking IDO in MSCs

abrogated the graft acceptance, and therefore IDO was verified as a

therapeutic factor in prolonging the graft survival in models of

organ transplantation. However, Gieseke et al. [2007] reported that

hMSCs exerted important immunomodulatory functions indepen-

dently of IFN-gR1 signaling and IDO expression.

NITRIC OXIDE (NO)

Emerging evidence showed that the mechanisms of MSC-mediated

immunosuppression vary among different species [Ren et al., 2008].

Immunosuppression by human- or monkey-derived MSCs is

mediated by IDO, whereas mouse MSCs utilize NO under the

same culture conditions. Ren et al. [2008] showed that mouse MSCs

abundantly expressed iNOS upon simulation of IFN-g and other pro-

inflammatory cytokines such as TNF-a, IL-1a, or IL-1b, while

hMSCs mainly secreted IDO. In a mouse model of graft-versus-host

disease (GVHD) [Ren et al., 2008], only wild-type MSCs reduced

GVHD, whereas MSCs lacking either the IFN-g receptor or iNOSwere

not effective. However, a specific NOS inhibitor, l-NMMA, did not

completely restore the T cell proliferation by primary MSCs,

suggesting that there should be additional factors involved in this

suppression [Sato et al., 2007].

TRANSFORMING GROWTH FACTOR-b1 (TGF-b1)

It has been shown that TGF-b1 contributes to the hMSC-mediated

immune modulation. Especially, Groh et al. [Groh et al., 2005]

showed that MSCs are activated by monocytes suppressed T cell

responses by secreting TGF-b1. Nasef et al. [Nasef et al., 2007a]

further demonstrated that TGF-b1 was particularly involved in the

inhibition of T lymphocyte proliferation during cell contact with

hMSCs along with IL-10. Later, English et al. [English et al., 2009]

showed that TGF-b1 and PGE2 derived from MSCs induced Tregs

that suppressed T cell response. Nemeth et al. [Nemeth et al., 2010]

reported that IV injected MSCs suppressed Th2-driven allergic

responses in a mouse model of ragweed-induced asthma by

secreting TGF-b1. Inflammatory cell-derived IL-4 and/or IL-13

induced secretion of TGF-b by MSCs, which could not only induce

the differentiation and help the survival of Tregs, but also block the

pro-inflammatory Th2 response at the same time. In addition,

Sotiropoulou et al. [Sotiropoulou et al., 2006] reported that MSCs

had suppressive effects on NK cells by secreting TGF-b1 and PGE2.

HUMAN LEUKOCYTE ANTIGEN-G (HLA-G)

Nasef et al. [Nasef et al., 2007b] showed that HLA-G contributed to

MSC-mediated inhibition of immune response in vitro. HLA-G may

play a role in immune tolerance in pregnancy, because it was

initially found on trophoblasts where it contributes to tolerance at

the materno-fetal interface. Interestingly, Ivanova-Todorova et al.

[Ivanova-Todorova et al., 2009] reported that progesterone

stimulated MSCs to express increased levels of both cell surface

and cytoplasmic HLA-G. Furthermore, Selmani et al. [Selmani et al.,

2008] further demonstrated the HLA-G-mediated immunomudula-

tory effects of MSCs using blocking of HLA-G. In addition to their

action on the adaptive immune system, MSCs, through HLA-G5,

affected innate immunity by inhibiting both NK cell-mediated

cytolysis and IFN-g secretion.

ANTI-APOPTOTIC AND REGENERATIVE EFFECTS

In addition to anti-inflammatory and immunosuppressive effects,

inhibition of cell death and stimulation of endogenous progenitors

also contribute to tissue repair. Chen et al. [Chen et al., 2003]

demonstrated that systemic administration of MSCs promoted

functional recovery by reducing neuronal apoptosis and stimulating

endogenous progenitor proliferation in brains of rats after stroke.

Recently, more groups [Munoz et al., 2005; Semont et al., 2010]

reported similar observations in hippocampus of healthy immuno-

deficient mice and in a model of radiation-induced gastrointestinal

tract injury. The aforementioned reports did not define the

mechanism of MSCs. However, they suggested the possibility that

the secretion of soluble factors by MSCs may account for beneficial

effects since there was no significant engraftment of MSCs. Indeed,

many trophic factors, including several well-known growth factors,

have been suggested as responsible for MSC-mediated tissue repair

by stimulating endogenous tissue progenitors or protecting injured

cells from death. Also, several groups reported that MSC-derived

stromal cell-derived factor-1 (SDF-1), vascular endothelial growth

factor (VEGF), epidermal growth factor (EGF), or insulin-like growth

factor 1 (IGF-1) exerted protective effects in many disease models

including MI [Yu et al., 2009; Tsubokawa et al., 2010; Angoulvant

et al., 2011], acute kidney injury [Imberti et al., 2007; Togel et al.,

2007], and brain injury [Deng et al., 2010; Wakabayashi et al., 2010;

Wang et al., 2010; Bakondi et al., 2011]. In addition, using an

overexpression technique [Liang et al., 2010; Tang et al., 2011],

some groups indirectly demonstrated secretion of trophic factors as

a mechanism of MSC-mediated tissue repair. Notably, using MSCs

transduced with lentiviral SDF-1 short hairpin RNA (shSDF-1),

Bakondi et al. [2011] directly showed that SDF-1 was a main

therapeutic factor of MSCs in a model of stroke. They found that

conditioned medium generated from shSDF-1-treated cells showed

significantly less protective effect, compared to conditioned

medium from control MSCs. In the murine model of cisplatin-
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induced kidney injury, Imberti et al. [2007] demonstrated that

administering IGF-1 gene-silenced MSCs limited their protective

effect on renal function and tubular structure compared to control

MSCs. Block et al. [2009] also observed that hMSCs cocultured with

UV irradiated fibroblasts markedly reduced the apoptosis of injured

cells by secreting stanniocalcin-1 (STC-1). From microarrays and

western blot analysis of MSCs, they found that hMSCs were

activated to increase synthesis and secretion of STC-1. Blocking

STC-1 with either antibodies or siRNA reversed the anti-apoptotic

effects of MSCs in UV-irradiated fibroblasts and lung epithelial cells

incubated at low pH in hypoxia.

However, since most trophic factors have been known as having

protective roles that promote cell proliferation and protect cells from

apoptosis, these factors may not only protect the host cells, but also

support MSC survival after transplantation, and thereby prolong the

therapeutic effects of MSCs in vivo.

CONCLUSION

Unlike embryonic or HSCs, MSCs seem to have a limited longevity

and differentiation potential in vivo. However, MSCs have shown

remarkable effects in a broad spectrum of diseases without

significant engraftment. As we discussed in this review, a variety

of secretory factors may explain these observations (Fig. 1).

Considering MSCs could be activated diversely by many signals

from injured tissues, it is reasonable to presume that a combined

action of many factors, rather than a sole action of one factor, could

contribute to beneficial effects of MSCs observed in various diseases.

For example, in the acute inflammatory phase, pro-inflammatory

environment may stimulate MSCs to secrete TSG-6 and PGE2 or

STC-1 and SDF-1, which in turn suppress excessive immune

responses and protect the injured tissues. On the other hand, MSCs

secrete SDF-1, VEGF, or other cytokines to stimulate recruitment,

proliferation, and differentiation of endogenous progenitor cells,

hence promoting tissue regeneration. Immunosuppressive effects

could be also mediated by other factors. Both direct T cell inhibition

by IDO or PGE2 and immune tolerance induced by TGF-b and PGE2

may contribute to MSC-mediated immunosuppressive effects.

Furthermore, additional factors that have not been discussed in

this review could contribute to tissue repair by the same or different

mechanisms. Indeed, factors such as leukemia inhibitory factor

[Nasef et al., 2008], heme oxygenase-1 [Mougiakakos et al., 2011],

keratinocyte growth factor [Lee et al., 2009a], and chemokine (C–C

motif) ligand 2 [Rafei et al., 2009] released from MSCs have been

shown beneficial in several models of diseases.

Taken together, therapeutic factors play a critical role in

mediating the action of MSCs in tissue repair. Defining these

therapeutic factors secreted by MSCs helped us to better understand

MSC function. However, it is still not clear how MSCs are being

activated in vivo to secrete these factors: This process can be

dependent on the type of the disease or the local environment in the

host. Addressing these issues will further help to utilize MSCs for

treating human diseases.

Fig. 1. MSCs exert their therapeutic effects by secreting a variety of factors.
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